

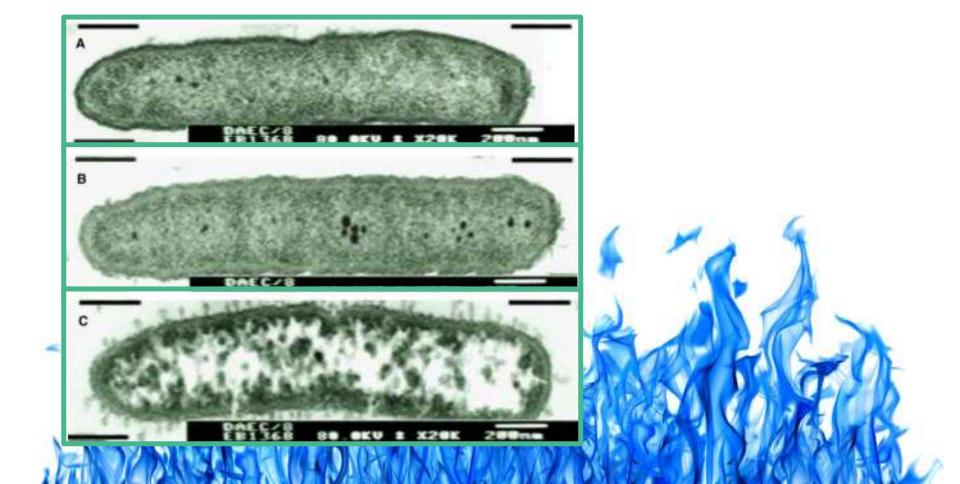
The Received of the Section of the winds in the Section of Africa.

DESINFIZIEREN

VS.

MIKROBIOLOGISCH SANIEREN

EINZIGARTIGDesinfektion und Reinigung


Was ist Reinigung? Was ist Desinfektion?

NEUE MÖGLICHKEITEN MIT ANOSAN®

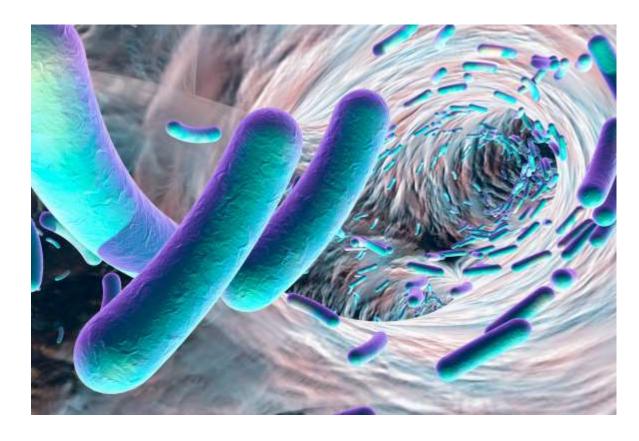
WIE WIRKT ANOSAN®

1 4 /	A C I	\sim $-$	ABI		
	AS I		Λ Λ Γ	DSA	N I (D)
					1

Desinfektionsmittel- klasse	ANOSAN®	Sauerstoff- Abspalter	Chlor-Abspalter	Alkohole	Aldehyde	Organische Säure	quatärnere Ammonium- verbindungen	Jodophore
Beispiel - Substanzen		Peressigsäure	Chloramin T	Propan-2-ol	Glutaraldehyd	Milchsäure	Benzalkoniumchlor id	PVP-Jod
Gram pos. Bakt.	++	(+)	++	++	++	+	++	++
Gram neg. Bakt.	++	(+)	++	++	++	+	(+)	++
Mykobakterien	+/++	+	(+)	+	+	_	_	+
Sporen (Bakt.)	+	+	-	_	+	+	-	+
Behüllte Viren	++	+	++	++	(+) HBV	+	+	++
Unbehüllte Viren	++	+	(+) Parvo-virus	-	++	+	-	-
Pilze	+/++	+	(+)	+	+	+	(+)	++
Nebenwirkungen	Eiweißfehler, Konzentrat korrosiv	hoch toxisch, starke Hautirritation, korrosiv, Kältefehler	Hautirritationen, Eiweißfehler, korrosiv	starke Irritation Schleimhaut, brennbar	hoch allergen, gering toxisch, Hautirritation, unstabil, Eiweißfehler	koagulieren Schmutz, Kältefehler	mäßig toxisch, Haut- und Schleimhautirritati on, Eiweißfehler, schlecht abbaubar	gering allergen, Schleimhautirrita tion, Jodresorption, verfärbt
Anwendungen	Haut, Schleimhaut, Raumluft, Oberflächen, Wunden Hände, Flächen, Wasser, Wäsche	Flächen, Lücken gegen Salmonellen und Streptokokken u.a.	Wäsche, Geschirr	Hände	Flächen, thermolabile Produkte	Tierstall, Lebensmittel	Flächen, (Instrumente)	Haut- und Schleimhaut- wunden

Geschirr.

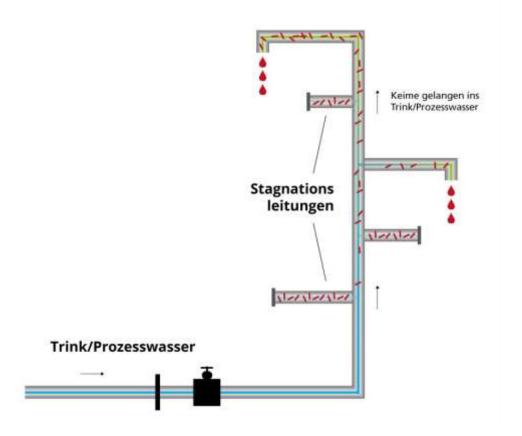
++ = sehr gute Wirksamkeit,erstall, wirksam, (+) = Wirkungslücken, —= nicht wirksam Wirkungsspektrum, Nebenwirkungen, Hauptanwendungsgebiete

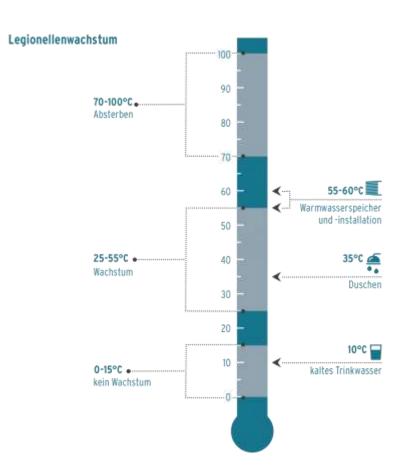

BIOFILM

Pseudomonaden

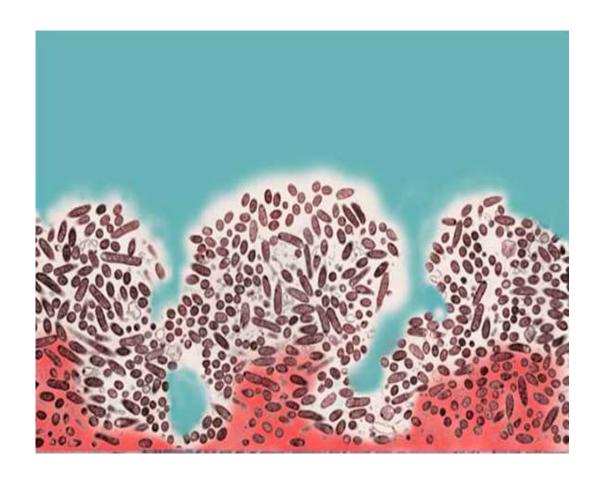
Legionellen

E.Coli


Kein anderes Mittel wirkt gegen Biofilm!


VERBREITUNG IM SYSTEM

WÄRME VS. LEGIONELLEN


- HELMHOLTZ ZENTRUM FÜR INFEKTIONSFORSCHUNG
- Legionellen vermehren sich bei 60°C
- Leistung der Heizung
- Atemschutz
- Kein Biofilmabbau

SCHUTZ IN GESCHLOSSENER FORMATION

HERKÖMMLICHES VERFAHREN

Wiederverkeimung VBNC-Stadien Erneute Einnistung

Der Austrag und die anschließende Verhinderung von Biofilm ist zwingend für den nachhaltigen Sanierungserfolg

Desinfektionsverfahren und die Induktion von VBNC Stadien; aus Bonn

Fischer, Kuriakose, Gemein, Linke, Exner, Gebel

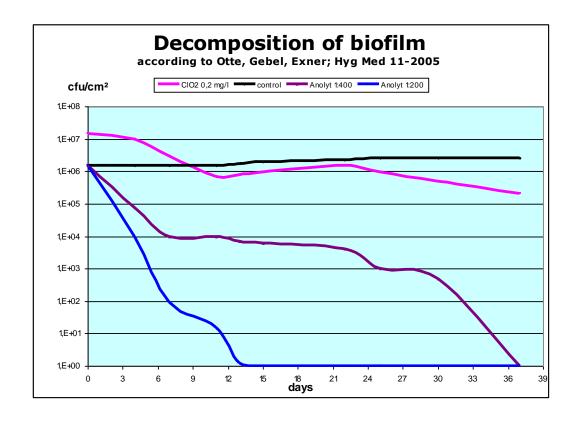
Desinfektionsmaßnahmen führen nach Aussetzten, sofern sie nicht den Biofilm beseitigen, zu einer schnellen Wiederverkeimung.

Zu gering dosierte Desinfektionsmittel verändern die Populationsstrucktur im Biofilm.

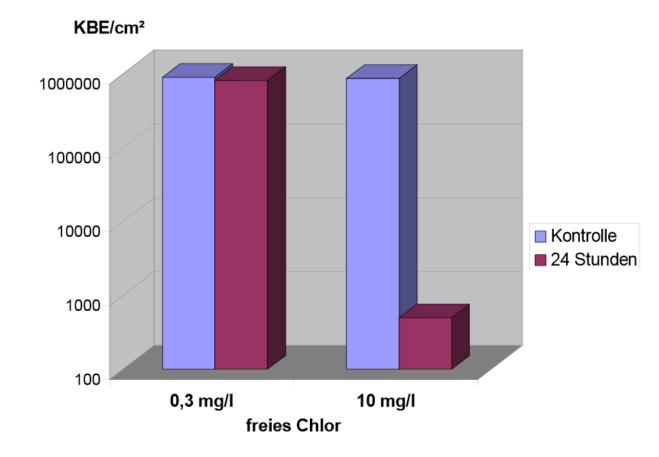
Zu gering dosierte Desinfektionsmittel können die Ausbildung von VBNC-Stadien begünstigen (täuscht Erfolg vor, da kein Nachweis

bei TW-Untersuchung).

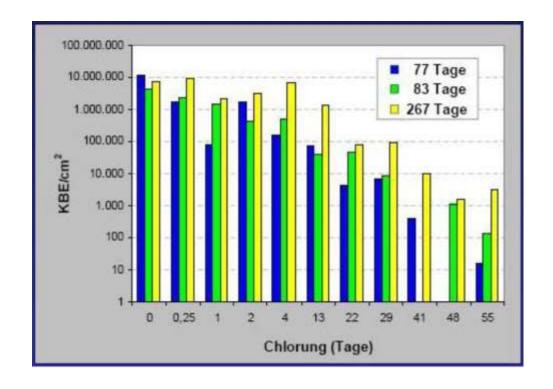
Pseudomonas aeruginosa lassen sich in vorhandene Biofilme einnisten.


Legionella pneumophila lassen sich bereits bei sehr niedrigen Temperaturen in vorhandene Biofilme einnisten.

Der Austrag und die anschließende Verhinderung von Biofilm ist zwingend für den nachhaltigen Sanierungserfolg!


CHLORDIOXID UND BIOFILM

Bitte beachten Sie den signifikanten Unterschied zwischen Chlordioxid und ANOSAN® (Anosan 1:200 = blaue Linie)



CHLORDIOXID UND BIOFILM

CHLORDIOXID UND ALTER DES BIOFILMS

DAS ZIEL IST ALSO BIOFILM ENTFERNEN!

THERMISCHE

TRINKWASSERDESINFEKTION?

CHEMISCHE

TRINKWASSERDESINFEKTION?

PHYSIKALISCHE

TRINKWASSERDESINFEKTION?

§ 11 AUFBEREITUNGSSTOFFE

Desinfektionsstoff	H-Sätze (Gefährdungen)	R-Sätze (Gefahrenmerkmale)	Gefahrensymbole
Natriumhypochlorit	314, 400	31, 34, 50	ätzend und umweltgefährlich
Kalziumhypochlorit	272, 302, 314, 400	8, 22, 31, 34, 50	ätzend, umweltgefährlich und brandfördernd
Chlor	270, 280, 330, 319, 315, 335, 400	23, 36/37/38, 50	giftig und umweitgefählich
Chlordioxid	270, 330, 314, 400	6, 8, 26, 34, 50	giftig, umweltgefährlich und brandfördernd
Ozon	270, 330, 319, 370, 372	nicht festgelegt	giftig, ätzend und brandfördernd
ANOSAN®	290*	keine	keine

FRESENIUS

INSTITUT FRESENIUS

Professiols Numeror: 3522001-02

150911149 Probaneumman Auftraggeber:

Ecabiotec Grobit & Co. KG. 64560 Riedstadt

18.11.2015

Entsprechend der zuvor genannten Reinheitsanforderungen kann Natriumhypochtorit, wenn es u.s. den Reinheitsanforderungen nach DIN EN 901 gerügt zur Desinfektion verwendet werden, (siehe auch TrinkwV 2001).

Gernilli Ihrem Auflrag haben wir ein Muster "ANO 02" erhalten, das entsprechend in Anlehnung an DIN EN 901 analytisch untersucht wurde.

Ergebnis (Austrog): Chiorat: < 0,01 %

Alle Ergebnisse sind im Prüfbericht 3522081-01 dergesteft.

Liste der Aufbereitungsstoffe und Deeinfektioneverfahren gemäß § 11 Trinkwasserverordnung Stand: November 2012.

gütig ab inkraftmeten der Zweiten Verordnung zur Änderung der Trinkwasserverundnung Telle

Aufbereitungsstoffe, die zur Desinfektion des Wassers eingesetzt werden

	Tex	E Aufbe	mitungeetof	le, die zur Desiré	elithan dee Y	Vassem singose	tzi werden	
Strhme	CAS-Nummer	ENECS-Mannair	Verwendungs- zweck	flastoth- arfordenagen	Zultengo Zugabe	Konzentralone- beneich nach Abachtung der Aufternitung?	Zu beschlande Reals-bons- produkte	Bernaskungon
Natrium- ingsochtorit.	7081- 52-6	231- 668-3	Des- infréllion	DIN EN 901 Tab. 1: 7 to 1 Grocowert En Ver surminigunger and Chizari (NeClO ₂): 4: 8-8 (eVm) ties Aktivatilions	1,2 mgt. Treios Ct ₂	max. 0,3 eigh. troins Cla assr. 0,1 eigh. troins Cla	Totaloges- restares, Brurest	Zusetz bie zu 6 mg/L freise Cb, und Gehalfs und Gehalfs und Gehalfs uns 0,8 mg/L freise Cb, social der Aufzanstung bleiben sucher Bedrockt, weren sucher die Desirtsieber nicht werzten kann oder werzten kann oder wenn die Desirtsieder zeilweise durch Arrynorken besitzt hacht freise der der der der der der der der der de

GEFAHRSTOFF § 6 SUBSTITUTIONS-PFLICHT

Durch *Sicherheit* ersetzten wir chemische und thermische Trinkwasserdesinfektion

Substitutionspflicht Das Ersetzen von Gefahrstoffen

Substitution ist hier der Ersatz von gefährlichen Stoffen durch ungefährlichere.

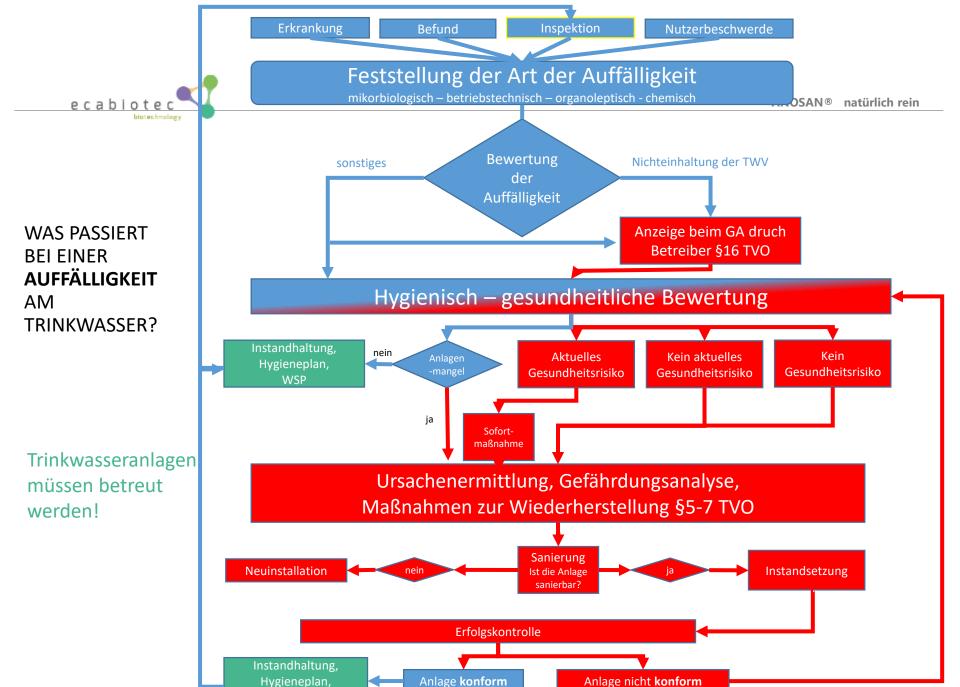
Eine Substitutionsprüfung wird im Rahmen der Gefährdungsbeurteilung durchgeführt. Eine Gefährdungsbeurteilung erfolgt vor jeder Aufnahme von Tätigkeiten, bei denen ein Gefahrenstoff benutzt wird. Die Substitutionsprüfung ist schriftlich zu dokumentieren.

Benutzt ein Unternehmen Gefahrstoffe, so ist der Arbeitgeber nach §6 der Gefahrstoffverordnung (GefStoffV) verpflichtet, eine Substitutionsprüfung vorzunehmen. Ist es möglich, einen weniger gefährlichen oder sogar ungefährlichen Stoff zu verwenden, so muß dieser neue Stoff verpflichtend eingesetzt werden.

Bei der Substitutionsprüfung nach §6 Abs.8 der GefStoffV hat der Arbeitgeber festzustellen,

- 1. ob Tätigkeiten mit Gefahrstoffen durchgeführt werden.
- 2. Ist dies der Fall, so muss er grundsätzlich die Möglichkeit einer Substitution prüfen und
- bevorzugt durchführen.
- Bei giftigen oder sehr giftigen Stoffen ist schriftlich zu begründen, warum auf eine Substitution verzichtet wird, und
- das Festhalten an der Verwendung gefährlicher Stoffe muss wohlüberlegt sein und schriftlich begründet werden.

Es besteht grundsätzlich eine Substitutionsverpflichtung. Die Suche nach Ersatzstoffen für Gefahrstoffe muss ständig durchgeführt werden.



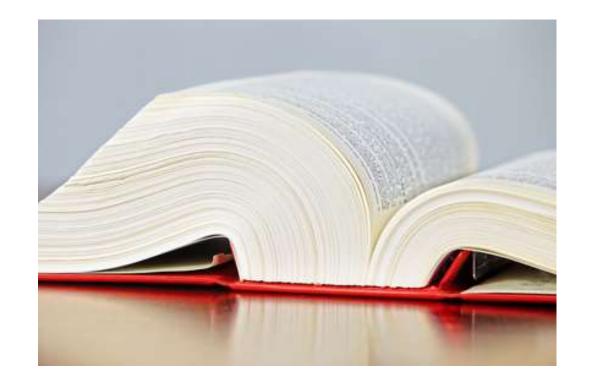
ANFORDERUNGEN TRINKWASSER VERORDNUNG

Verkehrssicherungspflicht

- § 1 Zweck der Verordnung
- § 4 Allgemeine Anforderungen
- § 5 Mikrobiolo. Anforderungen
- § 6 Chemische Anforderungen

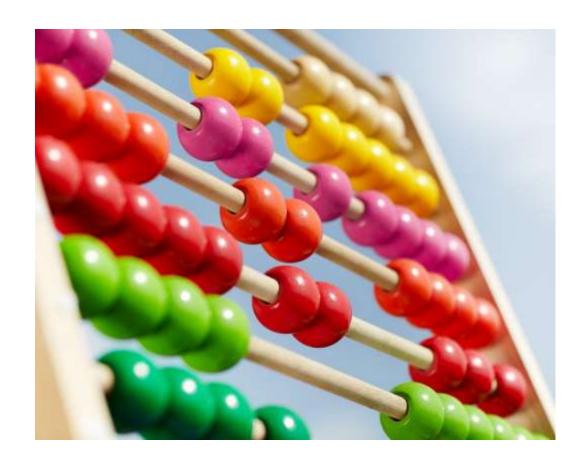
WSP

WER HAT EINFLUSS AUF DIE TRINKWASSERHYGIENE?


Der Erbauer
Der Eigentümer
Der Verwalter
Der Nutzer

§ 24 TVO DAS RISIKO ALS VERMIETER

Machtlos gegenüber willkürlicher Nutzung der Mieter


"EXPERTE DER MIKORBIOLOGISCHEN SANIERUNG"

WAS IST ZU TUN?

Bedarfsermittlung

ANGEBOT ANFORDERN

	<u>.</u>
	52
Auswahl	· ·
Auswahl	V
	н
	e
	1
Zentral Dezentral Nicht bekannt	
☐ Boiler ☐ Wärmepumpe ☐ Durchlauferhitzer ☐ Therme	
	Auswahl Zentrál Dezentral Nicht bekannt

LEITFADEN ZUR "MIKORBIOLOGISCHEN SANIERUNG"

Sehen Sie Beprobungen gelassen entgegen! Mit den "EXPERTEN DER MBS"

* Bis zum Ende der MBS oder bis die Anlage den technischen Anforderungen entspricht

- 10. Nachbeprobung durch akkreditiertes Labor
- 9. Erfolgskontrolle durch Legio-Pre-Check
- 8. Nach erreichen der Redoxwerte bis Ende* dosieren
- 7. Erste Redoxwert Messung durchführen
- 6. DPD-Wert 3x pro Woche messen
- 5. DPD-Wert messen an Zapfstelle (EG) < 0,3 max.0,6 mg
- 4. Rohwasser messen DPD + Redox
- 3. Ausfüllen Anlagenbuch, alle Maßnahmen eintragen
- 2. MONTAGE UND INBETRIEBNAHME
- 1. INFORMATIONSPFLICHT
 - 1. Gesundheitsamt
 - 2. Nutzer / Bewohner

To do bei jeder Begehung einer MBS-Anlage

- ✓ Spülvorgang an der Zirku starten
- ✓ Messung DPD Wert
- ✓ Kontrolle Stand Wasserzähler
- ✓ Kontrolle ANOSAN TW® Bevorratung im Tank
- √ Ggf. Nachfüllen
- ✓ Kontrolle Einstellung der Pumpe

✓ Alles Dokumentieren!!!

WAS IST ZU TUN?

1. INFO GESUNDHEITSAMT

UNSER TRINKWASSER NATÜRLICH REIN.

Das Trinkwasser dieser Immobilie erfüllt höchste hygienische Anforderungen. Es ist natürlich rein und befreit von oxidierbaren Keimen, Allergenen, Antibiotika- und Hormonrückständen.

Regelmäßige Kontrolle, Inspektion und Wartung der Trinkwasseranlage hat eine besonders hohe Bedeutung für uns, damit wir Ihnen die bestmögliche Trinkwasserqualität zur Verfügung stellen.

-Genießen Sie es-

Zur Aufbereitung wird das 100% mineralische ANOSAN TW* in einer Konzentration von 0,1% - 0,3% verwendet.

AVAITUR SES PRESENTS GODES

Sectings de Reisheit von AMONAY TW* moccasies top son

Das garantiert Trinineasserflygiere der resutten Gernation.

in der litte der Aufbereitungsstoffe (§EE Trinkwausery,) ist ANDXANTW[®] unter den Hattisvirypochioniten geführt.

ihr/e:

'external and dec behaviorgen der 20 bissesse vermitteng

atürlich rein

WAS IST ZU TUN?

2. INSTALLATION

Dosieranlage -Pumpe

MONTAGEANLEITUNG

Inbetriebnahme ANOSAN TW® Hygienestation

Inbetriebnahme

WAS IST ZU TUN?

3. DOKUMENTATION

Anlagenbuch

MBS Tagebuch

HYGIENEPLAN

für Trinkwasseranlagen

TRINKWASSER
NATÜRLICH REIN
UND GESUND

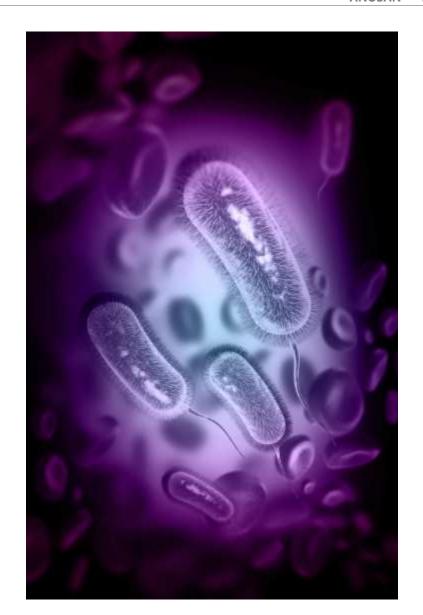
SICHERHEIT IST NICHT VERHANDELBAR!

LEITFADEN

4, 5 und 6. DPD Messung

LEITFADEN MBS

7. und 8. REDOX WERTE MESSEN


REDOXPOTENTIAL

Redoxpotential	Desinfektionszeit
500 - 550 mV	167,0 Min
550 - 600 mV	6,0 Min
600 - 650 mV	1,7 Min
650 - 700 mV	0,5 Min
750 mV	wenige Sekunden

Abtötungszeiten von 99.9 % E-Coli in Abhängigkeit vom Redoxpotential in gechlortem Wasser bei einem pH-Wert von 7,0.

REDOXPOTENTIAL

LEITFADEN MBS

9. Trinkwasseruntersuchung vom Labor

10. LEGIONELLENFREI

11. BETREUUNG DER ANLAGEN

BETREUUNG VON TRINKWASSERANLAGEN	BEI BEDARF	Konform mit TVO	REGELMÄßIG
Inspektion, Wartung Instandhaltung	-	Nein	+
Anlagenbuch Hygieneplan	-	Nein	+
Dokumentation	-	Nein	+
aaRdT eingehalten	-	Nein	+
Mikrobiologische Reinheit	Ungewiss	Nein	Sicher
Wahrscheinlichkeit pos. Befund bei Beprobung	15-35%		2%

Vielen Dank für Ihr Interesse